lunes, 9 de diciembre de 2013

ASCENSO Y CAIDA DEL ETER


Qué ruido es ése?
El viento bajo la puerta.
¿Qué ruido es ése ahora?
¿qué hace el viento?
Nada, como siempre.
Nada.

T. S. Eliot.

La Tierra baldía


La historia del éter es notable. A fines del siglo XVII, Newton había construido un universo libre de escombros medievales, unificado bajo la égida de la gravitación, y vacío. Los dos siglos siguientes se apresuraron a llenarlo. Motivos, como siempre, había. La teoría ondulatoria de la luz exigía que las ondas de luz fueran ondas de algo, que algo se moviera y vibrara. Las ondas de sonido son movimientos del aire, las olas, del agua. Pero cuando la luz se propaga en el vacío... ¿qué es lo que oscila? El vacío no es nada, y la nada no puede vibrar. Y así fue como el universo se lleno de éter para que algo pudiera vibrar y para que la teoría ondulatoria pudiera vivir.

El éter, tan luego. El éter era una sustancia de inconfundible cuño prenewtoniano: no solamente era incoloro, inodoro e insípido (invisible, e impalpable, además) sino que carecía de peso, era elástico, no ocupaba lugar e interpenetraba los cuerpos, que lo atravesaban limpiamente y sin percatarse de ello. El éter era bastante inverosímil, pero la teoría ondulatoria de la luz necesitaba éter, y hubo éter. Que en la segunda mitad del siglo XIX se hizo mas necesario que nunca, cuando el físico escocés James Clerk Maxwell, entre los años 1864 y 1873, unifico los conceptos de electricidad y magnetismo mostrando que eran aspectos de un único fenómeno el electromagnetismo y mediante un puñado de leyes muy simples logro explicarlo por completo. Era una vasta síntesis, una hazaña de tipo newtoniano, y que, rindiendo tributo a su estirpe, no ahorro notables predicciones. Entre ellas, la que afirmaba la existencia de ondas electromagnéticas (la luz misma, sugirió Maxwell, no es sino un fenómeno electromagnético). Afirmaciones puntualmente verificadas un puñado de años más tarde, cuando Hertz detecto las ondas adivinadas por Maxwell, y que hoy nos deparan placeres como la radio y delicias como la televisión. Y donde se propagaban estas ondas? En el éter, por supuesto.

Pero si se lo piensa, a finales del siglo diecinueve, el éter era una antigualla. Era como una lampara de aceite en medio de una iluminación de mercurio, como un molino de viento al lado de un ciclotrón, como si hiciera falta una carreta para explicar una locomotora. El éter podía convivir sin problemas con la ambrosía de los dioses, o con los cuatro imaginarios elementos aristotélicos, con la alquimia y su piedra filosofal, o incluso con el flogisto, pero en una época que ya manejaba la tabla de Mendeleiev, una sustancia como el éter no solo era químicamente molesta, sino completamente anacrónica. En verdad, el éter era una porquería.

Y sin embargo, allí estaban los científicos viviendo en el éter, (y creyendo en él). Y allí estaba el electromagnetismo exigiendo que sus ondas vibraran en un océano de éter. Que además, estaba en reposo absoluto.

Eso era lo peor de todo. Porque si el éter estaba en reposo absoluto, el movimiento absoluto debía existir también. Era una vuelta atrás. Enterrar los conceptos de reposo y movimiento absolutos había costado una dura lucha. ¡Y ahora volvían, como el fantasma del padre de Hamlet, de la mano del electromagnetismo! Y lo más peligroso es que el electromagnetismo no solo sugería el éter, el reposo y el movimiento absolutos, sino que afirmaba tener las herramientas como para medirlo.

Parecía simple: si el éter, en reposo absoluto, llena todo el universo, entonces la Tierra se mueve a través de una sopa de éter con movimiento también absoluto, y si la Tierra se mueve a través del éter, sobre ella actuara una especie de corriente de éter ( de la misma manera que un avión en movimiento recibe una corriente de aire). Si se envía un rayo de luz en sentido paralelo y contrario a la corriente de éter, esta corriente lo retrasara, de la misma manera que la corriente de un río es capaz de retrasar una barca. Y este retraso constatara el movimiento absoluto de la tierra y la existencia efectiva del éter.

Y bien. El físico norteamericano Michelson perito en medir la velocidad de la luz, no quiso perderse la oportunidad de confirmar el movimiento absoluto de la Tierra moderna a través del éter medieval. Monto los aparejos y afinó los instrumentos para que captaran la magnitud exacta del retraso, por ínfima que fuera. En 1881 llevo a cabo el experimento : el rayo partió y llego sin ningún retraso. Ningún viento de éter había perturbado el firme desplazarse de la luz. Y aunque el experimento de Michelson pareció en su momento un fracaso, había sido todo un éxito. El éter estaba muerto.



miércoles, 4 de diciembre de 2013

Los números del mosquito


DIALOGO CON HERNAN SOLARI, FISICO, DEL GRUPO DE ESTUDIO DE MOSQUITOS, FCEN



Las matemáticas aplicadas a la biología del mosquito permiten medir las estadísticas y generar modelos sobre la maduración de las larvas, su desarrollo y el control de la población.



–Cuénteme qué hace.
–Yo soy físico de formación y trabajé en física durante quince años. Después me fui pasando a la matemática, de la matemática a la física aplicada, después hice matemática más en abstracto y terminé haciendo matemática aplicada a la biología. Y ahí empezó mi colaboración con el grupo de mosquitos.
–¿Cómo es la matemática aplicada a la biología? –Lo que nosotros tratamos de hacer es ver qué matemática demanda la propia biología. A veces ocurre que se demanda una matemática que todavía no ha sido explorada, por lo cual uno tiene que hacer desarrollos en algunas cosas y al mismo tiempo esa construcción va generando requerimientos sobre la biología. Una cosa con la que estamos trabajando ahora es medir las estadísticas de tiempos de maduración de las larvas del mosquito. Es algo que uno ve desde el modelo que es necesario, que es fundamental, que uno necesita saber y que sin modelo es algo con lo cual los biólogos parecen no poder sacar conclusiones. Entonces hay un ida y vuelta entre la biología y la matemática. Por ejemplo, uno puede calcular las posibilidades de que una población de mosquitos se extinga. Estamos en el borde de la zona de distribución del mosquito Aedes aegypti. Eso significa que el modelo no puede ser de tal modo que presuponga que no hay extinciones, o que las poblaciones son muy grandes, modelo que funcionaría muy bien en el trópico, por ejemplo, donde no hay problemas de extinciones. Cuando uno hace el modelo para la Capital Federal, resulta que hay zonas que quedan completamente libres de mosquitos, zonas que después en el verano son recolonizadas.
–¿Y entonces? –Esta despoblación y recolonización había sido intuida por los biólogos y ahora es reconfirmada por los modelos. Pero, como le decía, el modelo debe ser capaz de tratar extinciones. Esa era una de las limitaciones primeras que tuvimos. Después necesitamos describir el ciclo de vida del mosquito y saber que esto no es una cosa determinista, que hay muchas variables que no controlamos y que va a ser estocástico. El modelo es necesariamente estocástico, y por mucho tiempo no supimos los estadios que teníamos que describir ni con cuánta minuciosidad teníamos que describirlos. Hay cosas que dependen de la descripción de los estadios, hay cosas que no dependen de la descripción de los estadios, hay una dinámica entre la biología, la matemática y las preguntas que uno le va a hacer al modelo.
–¿Cómo es esa dinámica? ¿Cuáles son las preguntas? –Nosotros empezamos con una pregunta básica: quisimos saber cómo eran las poblaciones de mosquitos para, a partir de eso, poder predecir las epidemias de dengue en la zona de Buenos Aires, que es aquella para la que tenemos datos (aunque no es la zona más propensa al dengue del país). Para generar una dinámica de la población en un año normal, Buenos Aires tiene unas lluvias que son más o menos regulares, de modo que hasta podrían ignorarse. Con el perfil de las poblaciones, se pueden calcular las posibilidades de epidemia. Justo el año que hubo circulación de virus, de hecho hubo una sequía que fue la mayor en cincuenta años (en 2009). Uno de los pensamientos era que el mosquito necesitaba agua para desarrollarse, la sequía tendría que haber hecho que el mosquito no se desarrollase y, por lo tanto, que hubiera pocas posibilidades de circulación de dengue. Y sin embargo, el dengue circuló.
–¿Por qué? –Porque la población tiene muchísima capacidad de recuperación. Primero, porque aparecen fenómenos, que son de baja probabilidad, de huevos que eclosionan sin que caiga una lluvia (sea por intervención del hombre, sea porque las hembras ponen los huevos sobre el agua). Después, lo que hay es una recuperación muy pero muy rápida de la población de mosquitos después de la sequía. Vienen dos o tres lluvias regulares y la población se recupera como si no hubiera habido sequía. O sea que los efectos de la sequía no se extienden en el tiempo. Mientras hubo lluvia, la población se deprimió, pero luego se recupera rápido. La circulación que se vio del virus del dengue en la zona correspondía a ese momento posterior a las primeras lluvias. El efecto de la sequía no dura. Entonces, si queremos reproducir bien esa dinámica, tenemos que reproducir mucho mejor los mecanismos de eclosión inducidos por las lluvias. Y esto lleva a cambiar la forma en que uno está describiendo la eclosión y los estadios de desarrollo. Y ahí aparece otro factor, que es el de la comida.
–A ver... –Esta es una gran discusión que tenemos. Hay un cierto consenso en que siempre hay algo que limita las poblaciones. Si la población no está controlada por nada, va a tender a crecer al infinito. Es exponencial. Si el modelo es lineal, el crecimiento es exponencial.
–Entonces, ¿dónde están los controles de población? –Llegamos a la conclusión de que los controles aparecen en el estadio larval. El mosquito adulto no tiene demasiados problemas en encontrar comida: sorbe jugos de las plantas, azúcares, y las hembras precisan picar a los humanos para poner los huevos. El Aedes tiene preferencia por los humanos.
–¿Por qué? –No sabemos, se crió con el humano. Pican también animales, pero no los eligen si tienen la posibilidad de elegir. Le decía que en el estadio larval compiten entre ellos por la comida, aparentemente. Pero la impresión que tienen los biólogos es que la comida es demasiado abundante como para que estén compitiendo por ella. Entonces la manera de resolver esto fue hacer un experimento, darles distintas cantidades de comida y ver cuál era el efecto de esto sobre el desarrollo de las larvas. Algunas cosas se sabían, como que el tiempo medio que tardaban en desarrollarse iba a decrecer en la medida en que tuvieran menos comida y el tamaño iba a ser más chico, pero otras cosas como que el proceso se iba a dispersar en el tiempo no se sabían y es algo que ahora estamos viendo.
–¿Cómo que se iba a dispersar en el tiempo? –Lo que uno va a encontrar en los libros de biología es que los bichitos se desarrollan en lo que se llama “cortes”. Todos los huevos que eclosionaron al mismo tiempo se van desarrollando más o menos sincrónicamente y a los cinco días emergen los adultos. Eso pasa en la medida en que la comida es muy abundante. Cuando la comida no es abundante, no tardan cinco días, sino diez o veinte, pero se dispersan: alguno madura a los diez, otro a los quince, otro a los veinte. Está todo mucho más disperso, ya no es una cohorte homogénea. Y esto cambia mucho la cuestión.
–No hay mucho dengue en Buenos Aires, ¿no? –No, la verdad que no. Y no debería haber, porque se tienen que dar condiciones muy apropiadas que en la ciudad no se dan.